O.P.Code:23EC0447

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Regular Examinations December-2025
DIGITAL CIRCUITS

		DIGITAL CIRCUITS	2.2		1	
		(Electrical & Electronics Engineering)	N/	n/1	. 70	
Tin	ne:	3 Hours	wax.	Marks	: 70	
		PART-A				
2		(Answer all the Questions $10 \times 2 = 20$ Marks)	CO1	L1	2M	
1	a	State De-Morgan's theorem.	CO ₂		2M	
	,b	Simplify the following Boolean expression into one literal.	COZ	. 1.2	ZIVI	
		$W'\hat{X}(Z'+YZ)+X(W+Y'Z)$.	CO2	L1	2M	
	c	Determine the Boolean expression for a half adder and full adder.	CO ₂	L1	2M	
	d	Convert the binary number 1011 into Gray code.	CO4	L1	2M	
	e	Define a decoder and mention one of its applications.	CO4	LI	2M	
	f	State the difference between multiplexer and demultiplexer.	CO5	L1	2M	
96	g	Draw the truth table of an SR latch.	CO5	L1	2M	
	h	Why is the master-slave configuration used in JK flip-flops?	CO6		2M	
	i	Write the difference between PROM and PLA.			2M	
	j	Mention two applications of ROM.	CO6	L1	ZIVI	
		PART-B	vi.		5.3	
		(Answer all Five Units $5 \times 10 = 50$ Marks)	2	22 =		
		UNIT-I				
2	a	State and prove the De-Morgan's Theorem with truth tables.	CO ₁	L3	5M	
	b	State and prove the Consensus theorem.	CO ₁	L3	5M	
		OR	Y			
3	a	Simplify the following expression using the K-map for the 3-variable.	CO1	L3	5M	
		Y = AB'C+A'BC+A'B'C+A'B'C'+AB'C'		. S	9 (1	
	b	Simplify the following Boolean expressions using K-map.	CO1	L3	5M	
		$F(A, B, C, D) = \Sigma m(1,3,7,11,15)$				
		UNIT-II				
*4	я	Design & implement Half Adder with truth table.	CO ₃	L3	5M	
	h	Design & implement Full Adder with truth table.	CO ₃	L3	5M	
		OR				
5	E	xplain the concept of BCD addition and design a BCD adder circuit.	CO ₃	L2	10M	
		UNIT-III		€94		
6	1	Inimize the function $F(A, B, C, D) = \sum m(1, 3, 4, 11, 12, 13, 14, 15)$ and	CO4	L2	10M	
6	10	inplement it using an 8-to-1 multiplexer.		5		
	11	iplement it using an o-to-1 manuplemen.				
		OR				
7		Implement the following function $F(A,B,C)=\Sigma m(1,3,5,6)$ using 16:1 MUX	CO4	L2	5M	
,	a h	Implement the following function $F(A,B,C)=\Sigma m(1,3,5,6)$ using 8:1 MUX	CO4	L2	5M	
	: 10	UNIT-IV		12	- ^ -	ř
0	Т		CO5	L3	10M	
8	L	Design a D flip-flop. Explain its truth table and applications. OR	7,00			
•		Distinguish between level triggered and edge triggered flip-flops with	CO5	L2	10M	
9			000	22	20,2112	
25	d	iagrams. UNIT-V		£:		
			COG	Т 2	10M	
10	(Compare three combinational circuits: PLA, PAL and PROM.	CO0	L3	TOTAL	
		OR	CO6	L2	10M	
11		mplement PLA circuit for the following functions $F_1(A,B,C)$ =	C 00		10171	
	Σ	$Sm(3,5,6,7), F_2(A,B,C) = \Sigma m(0,2,4,7).$	4	8		
		*** END ***				